Multifunctional photoelectrochemical logic gates based on a hemicyanine sensitized semiconductor electrode
نویسندگان
چکیده
A new amphiphilic hemicyanine dye, (E)-1,3,3-trimethyl-2-[2-(4-N-methylN-hexadecylaminophenyl)ethenyl]indolinium iodide (MHID) has been synthesized and successfully transferred onto a semiconducting transparent indium-tin oxide (ITO) electrode by Langmuir–Blodgett (LB) techniques. The photoelectric conversion properties of the dye MHID monolayer fabricated ITO electrode have been investigated in a three electrode photoelectrochemical cell. The observed photocurrent strongly depends on the applied electrode potential and the concentrations of the electron acceptors and donors. By using electron acceptors and (or) donors as input and photocurrent as output, respectively, we have fabricated this artificial photoelectrochemical system as multifunctional logic gates, corresponding to a series of logic operations (YES, OR, XOR and INHIBIT). Importantly, the gates of this photoelectrochemical system have been interconnected to demonstrate computation as a halfsubtractor, with Eu and hydroquinone (H2Q) as the two inputs and the cathodic photocurrent and the absolute value of the photocurrent as the two outputs, respectively.
منابع مشابه
Control of dark current in photoelectrochemical (TiO<sub>2</sub>/I<sup>−</sup>–I<sub>3</sub><sup>−</sup>) and dye-sensitized solar cells
The ruthenium complex bis-tetrabutylammonium cis-dithiocyanato-N,N9-bis-2,29-bipyridine-4-carboxylic acid, 49-carboxylate ruthenium(II), N-719, was found to block the dark current of dye sensitized solar cells (DSC), based on mesoporous TiO2 films deposited on a F-doped tin oxide electrode and the effect was compared to surface treatment by TiCl4 and the introduction of a compact TiO2 blocking ...
متن کاملLow Delay Time All Optical NAND, XNOR and OR Logic Gates Based on 2D Photonic Crystal Structure
Background and Objectives: Recently, photonic crystals have been considered as the basic structures for the realization of various optical devices for high speed optical communication. Methods: In this research, two dimensional photonic crystals are used for designing all optical logic gates. A photonic crystal structure with a triangular lattice is proposed for making NAND, XNOR, and OR optica...
متن کاملSynthesis and Characterization of Indoline-based organic sensitizers for photoelectrochemical cells
In this paper we designed and prepared three free-metal organic days Dye 1, Dye 2 and Dye 3 based on indoline with n-phenly substituents iminodibenzyl as the electron donor group. We used cyanoacrylic acid substituent as the electron acceptor anchoring group in organic dyes. The proposed dyes were prepared from iminodibenzyl as the starting material by standard reactions and characterized by di...
متن کاملReduction of graphene oxide by an in-situ photoelectrochemical method in a dye-sensitized solar cell assembly
Reduction of graphene oxide [GO] has been achieved by an in-situ photoelectrochemical method in a dye-sensitized solar cell [DSSC] assembly, in which the semiconductor behavior of the reduced graphene oxide [RGO] is controllable. GO and RGO were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, high-resolution transmission electron microscope, and Fourier-transform infrared...
متن کاملLogic gates operated by bipolar photoelectrochemical water splitting.
A new approach for the design of logic gates that do not involve chemical inputs is presented here. This concept is based on the polarization of a light-sensitive interface. AND and OR logic gates, working with cheap reactants, which locally triggered water splitting half reactions, were designed and operated.
متن کامل